site logo

A Working Plant

The "agriculturist"—An old chair factory—A neighbor's home-coming—The idle wheel in commission again—Light, heat and power for nothing—Advantages of electricity.

Let us take an actual instance of one man who did go ahead and find out by experience just how intricate and just how simple a thing electricity from farm water-power is. This man's name was Perkins, or, we will call him that, in

relating this story.

Perkins was what some people call, not a farmer, but an "agriculturist,"—that is, he was a back-to-the-land man. He had been born and raised on a farm. He knew that you must harness a horse on the left side, milk a cow on the right, that wagon nuts tighten the way the wheel rims, and that a fresh egg will not float.

He had a farm that would grow enough clover to fill the average dairy if he fed it lime; he had a boy coming to school age; and both he and his wife wanted to get back to the country. They had their little savings, and they wanted, first of all, to take a vacation, getting acquainted with their farm. They hadn't taken a vacation in fifteen years.

He moved in, late in the summer, and started out to get acquainted with his neighbors, as well as his land. This was in the New England hills. Water courses cut through everywhere. In regard to its bountiful water supply, the neighborhood had much in common with all the states east of the Mississippi, along the Atlantic seaboard, in the lake region of the central west, and in the Pacific States. With this difference; the water courses in his neighborhood had once been of economic importance.

A mountain river flowed down his valley. Up and down the valley one met ramshackle mills, fallen into decay. Many years ago before railroads came, before it was easy to haul coal from place to place to make steam, these little mills were centers of thriving industries, which depended on the power of falling water to make turned articles, spin cotton, and so forth. Then the railroads came, and it was easy to haul coal to make steam. And the same railroads that hauled the coal to make steam, were there to haul away the articles manufactured by steam power. So in time the little manufacturing plants on the river back in the hills quit business and moved to railroad statons. Then New England, from being a manufacturing community made up of many small isolated water plants, came to be a community made up of huge arteries and laterals of smoke stacks that fringed the railroads. Where the railroad happened to follow a river course—as the Connecticut River—the water-power plants remained; but the little plants back in the hills were wiped off the map—because steam power with railroads at the front door proved cheaper than water-power with railroads ten miles away.

One night Perkins came in late from a long drive with his next-door neighbor. He had learned the first rule of courtesy in the country, which is to unhitch his own side of the horse and help back the buggy into the shed. They stumbled around in the barn putting up the horse, and getting down hay and grain for it, by the light of an oil lantern, which was set on the floor in a place convenient to be kicked over. He went inside and took supper by the light of a smoky smelly oil lamp, that filled the room full of dark corners; and when supper was over, the farmwife groped about in the cellar putting things away by the light of a candle.

The next day his neighbor was grinding cider at his ramshackle water mill—one of the operations for which a week must be set aside every fall. Perkins sat on a log and listened to the crunch-crunch of the apples in the chute, and the drip of the frothy yellow liquid that fell into waiting buckets.

"How much power have you got here?" he asked.

"Thirty or forty horsepower, I guess."

"What do you do with it, besides grinding cider to pickle your neighbors' digestion with?"

"Nothing much. I've got a planer and a moulding machine in there, to work up jags of lumber occasionally. That's all. This mill was a chair-factory in my grandfather's day, back in 1830."

"Do you use it thirty days in a year?"

"No; not half that."

"What are you going to do with it this winter?"

"Nothing; I keep the gate open and the wheel turning, so it won't freeze, but nothing else. I am going to take the family to Texas to visit my wife's folks for three months. We've worked hard enough to take a vacation."

"Will you rent me the mill while you are gone?"

"Go ahead; you can have it for nothing, if you will watch the ice."

"All right; let me know when you come back and I'll drive to town and bring you home."

Three months went by, and one day in February the city man, in response to a letter, hitched up and drove to town to bring his neighbor back home. It was four o'clock in the afternoon when they started out, and it was six—dark—when they turned the bend in the road to the farm house. They helped the wife and children out, with their baggage, and as Perkins opened the door of the house, he reached up on the wall and turned something that clicked sharply.

Instantly light sprang from everywhere. In the barn-yard a street lamp with an 18-inch reflector illuminated all under it for a space of 100 feet with bright white rays of light. Another street lamp hung over the watering trough. The barn doors and windows burst forth in light. There was not a dark corner to be found anywhere. In the house it was the same. Perkins led the amazed procession from room to room of the house they had shut up for the winter. On the wall in the hall outside of every room was a button which he pushed, and the room became as light as day before they entered. The cellar door, in opening, automatically lighted a lamp illuminating that cavern as it had never been lighted before since the day a house was built over it.

Needless to say, the farmer and his family were reduced to a state of speechlessness.

"How the deuce did you do it?" finally articulated the farmer.

"I put your idle water wheel to work," said Perkins; and then, satisfied with this exhibition, he put them back in the sleigh and drove to his home, where his wife had supper waiting.

While the men were putting up the team in the electric lighted barn, the farmwife went into the kitchen. Her hostess was cooking supper on an electric stove. It looked like a city gas range and it cooked all their meals, and did the baking besides. A hot-water tank stood against the wall, not connected to anything hot, apparently. But it was scalding hot, by virtue of a little electric water heater the size of a quart tin can, connected at the bottom. Twenty-four hours a day the water wheel pumped electricity into that "can," so that hot water was to be had at any hour simply by turning a faucet. In the laundry there was an electric pump that kept the tank in the attic filled automatically. When the level of water in this tank fell to a certain point, a float operated a switch that started the pump; and when the water level reached a certain height, the same float stopped the pump. A small motor, the size of a medium Hubbard squash operated a washing machine and wringer on wash days. This same motor was a man-of-all-work for this house, for, when called on, it turned the separator, ground and polished knives and silverware, spun the sewing machine, and worked the vacuum cleaner.

Over the dining room table hung the same hanging shade of old days, but the oil lamp itself was gone. In its place was a 100-watt tungsten lamp whose rays made the white table cloth fairly glisten. The wires carrying electricity to this lamp were threaded through the chains reaching to the ceiling, and one had to look twice to see where the current came from. In the sitting room, a cluster of electric bulbs glowed from a fancy wicker work basket that hung from the ceiling. The housewife had made use of what she had throughout the house. Old-fashioned candle-shades sat like cocked hats astride electric bulbs. There is little heat to an electric bulb for the reason that the white-hot wire that gives the light is made to burn in high vacuum, which transmits heat very slowly. The housewife had taken advantage of this fact and from every corner gleamed lights dressed in fancy designs of tissue paper and silk.

"Now we will talk business," said Perkins when supper was over and they had lighted their pipes.

The returned native looked dubious. His New England training had warned him long ago that one cannot expect to get something for nothing, and he felt sure there was a joker in this affair.

"How much do I owe you?" he asked.

"Nothing," said Perkins. "You furnish the water-power with your idle wheel, and I furnish the electric installation. This is only a small plant I have put in, but it gives us enough electricity to go around, with a margin for emergencies. I have taken the liberty of wiring your house and your horse-barn and cow-barn and your barn-yard. Altogether, I suppose you have 30 lights about the place, and during these long winter days you will keep most of them going from 3 to 5 hours a night and 2 or 3 hours in the early morning. If you were in town, those lights would cost you about 12 cents an hour, at the commercial rate of electricity. Say 60 cents a day—eighteen dollars a month. That isn't a very big electric light bill for some people I know in town—and they consider themselves lucky to have the privilege of buying electricity at that rate. Your wheel is running all winter to prevent ice from forming and smashing it. It might just as well be spinning the dynamo.

"If you think it worth while," continued Perkins,—"this $18 worth of light you have on tap night and morning, or any hour of the day,—we will say the account is settled. That is, of course, if you will give me the use of half the electricity that your idle wheel is grinding out with my second-hand dynamo. We have about eight electrical horsepower on our wires, without overloading the machine. Next spring I am going to stock up this place; and I think about the first thing I do, when my dairy is running, will be to put in a milking machine and let electricity do the milking for me. It will also fill my silo, grind my mowing-machine knives, saw my wood, and keep water running in my barn. You will probably want to do the same.

"But what it does for us men in the barn and barn-yard, isn't to be compared to what it does for the women in the house. When my wife wants a hot oven she presses a button. When she wants to put the 'fire' out, she presses another. That's all there is to it. No heat, no smoke, no ashes. The same with ironing—and washing. No oil lamps to fill, no wicks to trim, no chimneys to wash, no kerosene to kick over and start a fire."

"You say the current you have put in my house would cost me about $18 a month, in town."

"Yes, about that. Making electricity from coal costs money."

"What does it cost here?"

"Practically nothing. Your river, that has been running to waste ever since your grandfather gave up making chairs, does the work. There is nothing about a dynamo to wear out, except the bearings, and these can be replaced once every five or ten years for a trifle. The machine needs to be oiled and cared for—fill the oil cups about once in three days. Your water wheel needs the same attention. That's all there is to it. You can figure the cost of your current yourself—just about the cost of the lubricating oil you use—and the cost of the time you give it—about the same time you give to any piece of good machinery, from a sulky plow to a cream separator."

This is a true story. This electric plant, where Perkins furnishes the electric end, and his neighbor the water-power, has been running now for two years, grinding out electricity for the two places twenty-four hours a day. Perkins was not an electrical engineer. He was just a plain intelligent American citizen who found sufficient knowledge in books to enable him to install and operate this plant. Frequently he is away for long periods, but his neighbor (who has lost his original terror of electricity) takes care of the plant. In fact, this farmer has given a lot of study to the thing, through curiosity, until he knows fully as much about it now as his city neighbor.

He had the usual idea, at the start, that a current strong enough to light a 100 candlepower lamp would kick like a mule if a man happened to get behind it. He watched the city man handle bare wires and finally he plucked up courage to do it himself.

It was a 110-volt current, the pressure used in our cities for domestic lighting. The funny part about it was, the farmer could not feel it at all at first. His fingers were calloused and no current could pass through them. Finally he sandpapered his fingers and tried it again. Then he was able to get the "tickle" of 110 volts. It wasn't so deadly after all—about the strength of a weak medical battery, with which every one is familiar. A current of 110 volts cannot do any harm to the human body unless contact is made over a very large surface, which is impossible unless a man goes to a lot of trouble to make such a contact. A current of 220 volts pressure—the pressure used in cities for motors—has a little more "kick" to it, but still is not uncomfortable. When the pressure rises to 500 volts (the pressure used in trolley wires for street cars), it begins to be dangerous. But there is no reason why a farm plant should be over 110 volts, under usual conditions; engineers have decided on this pressure as the best adapted to domestic use, and manufacturers who turn out the numerous electrical devices, such as irons, toasters, massage machines, etc., fit their standard instruments to this voltage.

Farm labor and materials built this crib and stone dam

As to the cost of this co-operative plant—it was in the neighborhood of $200. As we have said, it provided eight electrical horsepower on tap at any hour of the day or night—enough for the two farms, and a surplus for neighbors, if they wished to string lines and make use of it.

The dynamo, a direct-current machine, 110 volts pressure, and what is known in the trade as "compound,"—that is, a machine that maintains a constant pressure automatically and does not require an attendant—was picked up second-hand, through a newspaper "ad" and cost $90. The switchboard, a make-shift affair, not very handsome, but just as serviceable as if it were made of marble, cost less than $25 all told. The transmission wire cost $19 a hundred pounds; it is of copper, and covered with weatherproofed tape. Perkins bought a 50-cent book on house-wiring, and did the wiring himself, the way the book told him to, a simple operation. For fixtures, as we have said, his wife devised fancy shades out of Mexican baskets, tissue paper, and silk, in which are hidden electric globes that glow like fire-flies at the pressing of a button. The lamps themselves are mostly old-style carbon lamps, which can be bought at 16 cents each retail. In his living room and dining room he used the new-style tungsten lamps instead of old-style carbon. These cost 30 cents each. Incandescent lamps are rated for 1,000 hours useful life. The advantage of tungsten lights is that they give three times as much light for the same expenditure of current as carbon lights. This is a big advantage in the city, where current is costly; but it is not so much of an advantage in the country where a farmer has plenty of water-power—because his current costs him practically nothing, and he can afford to be wasteful of it to save money in lamps. Another advantage he has over his city cousin: In town, an incandescent lamp is thrown away after it has been used 1,000 hours because after that it gives only 80% of the light it did when new—quite an item when one is paying for current. The experience of Perkins and his neighbor in their coöperative plant has been that they have excess light anyway, and if a few bulbs fall off a fifth in efficiency, it is not noticeable. As a matter of fact most of their bulbs have been in use without replacing for the two years the plant has been in operation. The lamps are on the wall or the ceiling, out of the way, not liable to be broken; so the actual expense in replacing lamps is less than for lamp chimneys in the old days.

Insurance companies recognize that a large percentage of farm fires comes from the use of kerosene; for this reason, they are willing to make special rates for farm homes lighted by electricity. They prescribe certain rules for wiring a house, and they insist that their agent inspect and pass such wiring before current is turned on. Once the wiring is passed, the advantage is all in favor of the farmer with electricity over the farmer with kerosene. The National Board of Fire Underwriters is sufficiently logical in its demands, and powerful enough, so that manufacturers who turn out the necessary fittings find no sale for devices that do not conform to insurance standards. Therefore it is difficult to go wrong in wiring a house.

Finally, as to the added value a water-power electric plant adds to the selling price of a farm. Let the farmer answer this question for himself. If he can advertise his farm for sale, with a paragraph running: "Hydroelectric plant on the premises, furnishing electricity for light, heat, and power"—what do you suppose a wide-awake purchaser would be willing to pay for that? Perkins and his neighbor believe that $1,000 is a very modest estimate added by their electric plant to both places. And they talk of doing still more. They use only a quarter of the power of the water that is running to waste through the wheel. They are figuring on installing a larger dynamo, of say 30 electrical horse-power, which will provide clean, dry, safe heat for their houses even on the coldest days in winter. When they have done this, they will consider that they are really putting their small river to work.